An Image Segmentation Algorithm for the Hyperspectral Remote Sensing Image

نویسنده

  • Ke Wang
چکیده

The technology of hyperspectral remote sensing image improves the capability of collecting the objects such as lakes, rivers, farmlands, buildings, forest and desert in the ground surface. Since the spatial resolution is becoming higher recently, image segmentation of hyperspectral remote sensing is important to the next step of remote sensing image classification and object recognition. In this paper, we proposed a new algorithm using mean shift filtering, and watershed transform, for hyperspectral image segmentation. Usually, hyperspectral image has hundreds of spectral bands, thus, it is difficult for image segmentation. First, the mean shift algorithm is used for smoothing these all bands. Second, Canny edge detection method and vector field model are used to calculate edge strength of these bands, respectively. Finally, automatic marker watershed transform is applied for the edge strength to obtain the segmentation result. In order to evaluate the efficiency of the novel hyperspectral image segmentation algorithm, an unsupervised entropy based evaluation method, is performed on the segmentation result from AVIRIS hyperspectral data. The experimental results illustrate that the proposed algorithm can be used to obtain better segmentation results for hyperspectral data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Sub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran

Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...

متن کامل

Low-Shot Learning for the Semantic Segmentation of Remote Sensing Imagery

Recent advances in computer vision using deep learning with RGB imagery (e.g., object recognition and detection) have been made possible thanks to the development of large annotated RGB image datasets. In contrast, multispectral image (MSI) and hyperspectral image (HSI) datasets contain far fewer labeled images, in part due to the wide variety of sensors used. These annotations are especially l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015